v 4

Outlook on GNNs for HEP tracking

Steve Farrell, Xiangyang Ju
NERSC, LBNL

Exa.TrX kickoff, 2019-06-04

Thoughts on representations .

e We tried a bunch of things in
HEP.TrkX

o Images of simple toy data
o Detector images
o Hit sequences

o Hit graphs

30

20

10

e Regardless of the specific model

architecture or application, |
believe we’ve found the right
representation of HEP tracking
data.

m

o ~N

"h.uH

rlr

A

vlllll

-1000 =750 -500 -250 O 250 500 750 1000

Z [mm]

—e— Data
¢ Model

Increasing complexity

The basic GNN approach seems to be holding up with fairly major upgrades in
data complexity
Steps still in progress

O

Whole detector, including endcaps

O

Robust handling of missing hits, double hits, shared hits

800 -

r[mm]

\

10 N\ \\
800 1 I\ \
600

W
o | 06 \\\\\,\\\\\\\\\\\ \\\}

\; \\ 'll
i \\\\K\\\\\\

N 74 . S\
-—GIOO —4‘00 —2‘00 Z[r(;)]m] 2(I)0 4(I)0 6(I)0 0-

\

—1000

-500

m

What's missing?
e Post-processing

o Need a robust method to build final candidate tracks

m Able to stitch together pieces of tracks
e Baseline methods results

o E.g., Kalman Filter tracking on the TrackML dataset

HPC scaling work with Cray BDC

e Through the Cray Big Data Center collaboration, we’re engaging with folks
from Cray and LBNL’s CRD to push on HPC scaling of GNNs (for tracking)

o Strong interest in scaling GNNs in PyTorch
e Computational challenges
o Graphs with sparse connectivity => need sparse op support
o Variable sized graphs => need to handle load imbalance at scale

o Large scale training of GNNs => not much experience/intuition

Single node optimizations

e Saliya Ekanayake started with my original dense representation model (dense
adjacency matrices)

o Did some profiling

o Implemented faithful translation to sparse representations and using some
functionality from the pytorch-geometric package

o Huge cost from the dense representation
e Later, | re-implemented the original model in native pytorch-geometric
representation and operations (scatter_add)

o Saliya is comparing these

<listcomp> x32 __getitem__ x32 <built-in method cat> x448 <built-in method bmm> x832 <built-in method tanh> x448 linear x608

Total: 3468ms 5.0% Total: 437ms 0.6% Total: 674ms 1.0% Total: 16989ms 23.2% Total: 763ms 1.1% Total: 399ms 0.6%
Own: 1ms 0.0% Own: Oms 0.0% Own: 674ms 1.0% Own: 15989ms 23.2% Own: 763ms 1.1% Own: 58ms 0.1%
A A A A A A A A A
<method 'run_backward' of 'torch._C._Engi bj %28 llate_fn *x32 <listcomp> x32 forward *x32 forward xa4s forward x608
Total: 356164ms 51.1% Total: 3459ms 5.0% Total: 437ms 0.6% Total: 28521ms 41.5% Total: 763ms 1.1% Total: 403ms 0.6%
Own: 36164ms 51.1% Own: 0ms 0.0% Own: Oms 0.0% Own: 3ms 0.0% Own: Oms 0.0% Own: 3ms 0.0%
A A A A A
backward *28 __next__ x40 _call_ x1856
Total: 35155ms 51.1% Total: 4107ms 6.0% Totak: 28522ms 41.5%
Own: Oms 0.0% Own: 210ms 0.3% Own: 319ms 0.5%
A A A % A
backward x28 evaluate x4

Total: 356166ms 51.1%
Own: Oms 0.0%
A

Total: 5293ms 7.7%
Own: Oms 0.0%

decorate_no_grad x4
Total: 5429ms 7.9%
Own: 136ms 0.2%

A
A
A

forward() -- time in us

Total time:

Function: forward at line 78

28.7951 s
File: /Users/esaliya/sali/git/github/esaliya/python/heptrkx—-gnn-tracking/models/gnn.py

def forward(self, inputs):
"""Apply forward pass of the model"""
X, Ri, Ro = inputs
Apply input network to get hidden representation
H = self.input network (X)
Shortcut connect the inputs onto the hidden representation
H = torch.cat ([H, X], dim=-1)
Loop over iterations of edge and node networks
for i in range(self.n iters):
Apply edge network
e = self.edge_network(H, Ri, Ro)
Apply node network
H = self.node network(H, e, Ri, RO)
Shortcut connect the
H = torch.cat ([H, X], dim=-1)
Apply final edge network

Line # Hits Time Per Hit % Time Line Contents
78 @profile
79
80
81 32 480. 15. 0.

82
83 32 83301. 2603. 0.
84
85 32 13714. 428. 0.
86
87 160 268. 1. 0.
88
89 128 6265327. 48947. 21.
90
91 128 20835340.0 162776. 72.
92
93 128 31330. 244 . 0.
94
95 32 15653009. 48915. 5.

return self.edge network(H, Ri, RO)

Node Network forward() -- time in ys

Total time:

Function: forward at line 49

20.5506 s
File: /Users/esaliya/sali/git/github/esaliya/python/heptrkx-gnn-tracking/models/gnn.py

Line # Hits Time Per Hit % Time Line Contents
49 @profile
50 def forward(self, X, e, Ri, RoO):
51 128 2549745.0 19919.9 12.4 bo = torch.bmm(Ro.transpose(l, 2),
52 128 2588509.0 20222.7 12.6 bi = torch.bmm(Ri.transpose(l, 2),
53 128 5036099.0 39344.5 24.5 Rwo = Ro * e[:,None]
54 128 5280113.0 41250.9 25.7 Rwi = Ri * e[:,None]
55 128 2318774.0 18115.4 11.3 mi = torch.bmm(Rwi, bo)
56 128 2370559.0 18520.0 11.5 mo = torch.bmm(Rwo, bi)
57 128 89165.0 696.6 0.4 M = torch.cat([mi, mo, X], dim=2)
58 128 317685.0 2481.9 1.5 return self.network (M)

Edge Network forward() -- time in ys

Total time: 7.78296 s
File: /Users/esaliya/sali/git/github/esaliya/python/heptrkx-gnn-tracking/models/gnn.py
Function: forward at line 24

Line # Hits Time Per Hit % Time Line Contents
24 @profile
25 def forward(self, X, Ri, Ro):
26 # Select the features of the associated nodes
27 160 3169923.0 19812.0 40.7 bo = torch.bmm(Ro.transpose(l, 2), X)
28 160 3249926.0 20312.0 41.8 bi = torch.bmm(Ri.transpose(l, 2), X)
29 160 540897.0 3380.6 6.9 B = torch.cat([bo, bi], dim=2)
30 # Apply the network to each edge

31 160 822219.0 5138.9 10.6 return self.network (B) .squeeze(-1)

memory used (in MiB)

/anaconda3/envs/hep/bin/python train.py configs/segclf_med.yaml D e n S e VS . S p a rse m e m O ry

w
=}
5}

'S
o
o

—— 20/03/2019 - start at 11:04:39.642 B Sparse (150 - 700 MB)

~—— main 60.665s

Il
Il' ‘il\" \I’ u IIII\‘

memory used (in MiB)
w
o
o

[N}
=}
5}

-
o
=)

o

0 10 20 30 40 50 60
time (in seconds)

1500 A

1250 A

1000 4 ! i ‘ f

ifhil Dense (600 - 1500 MB)

i i H F] —— 20/03/2019 - start at 11:01:47.938

| 1 i
B II§i ,il —— main 82.931s

[}
1
1
]
1
1
1
1
1
1
:
1
500 A f
i
1
250 A .
1

1

1

1

T

1

0 20 40 60 80
time (in seconds)

Training time

Training Time (s)

Dataset N | agnn dense agnn agnn
(tr/val) scatter add spspmm
Med 8 24.0416 9.63175 10.6389

(7/1)
Big 64 81.9128 102.74
(60/4)

“Native” pytorch-geometric is fastest

Training Time (s)

Medium 8 (7/1)

Big 64 (60/1)

B agnndense
B agnn scatter add

B agnn spspmm

Multi-node optimizations

Strong load imbalance in profiling =>

Need some special handling of the
data to balance the load

o E.g., grouping samples together on
nodes to even it out
Other ongoing work

o Convergence at scale

o 1/O bottlenecks?

Per-Worker HEP-TRKX-GNN flops 2 Epochs, 16 ranks, batch-size = 1
4008

3508
3008,
2508

o 2008,
—
4

1508

1008,

508

Time (s)

Work with Jacob Balma and
Kristi Maschhoff from Cray

13

Summary

e \We've made good progress, though there’s still some work to go
e External folks find our problem very interesting for a number of reasons

e |everaging their expertise to optimize and scale these workflows should be
beneficial

14

